Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 6(11): 2866-2871, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33074651

RESUMO

Biofilms are one of the most challenging obstacles in bacterial infections. By providing protection against immune responses and antibiotic therapies, biofilms enable chronic colonization and the development of antibiotic resistance. As previous clinical observations and studies have shown, traditional antibiotic therapy alone cannot effectively treat and eliminate biofilm forming infections due to the protection conferred by the biofilm. A new strategy specifically targeting biofilms must be developed. Here, we specifically target and bind to the PAO1 biofilm and elucidate the molecular mechanism behind the interaction between a glycan targeted polymer and biofilm using a continuous flow biofilm model. The incubation of biofilms with fluorescent glycan targeted polymers demonstrated strong and persistent interactions with the mannose-containing polymer even after 24 h of continuous flow. To evaluate the role of major biofilm proteins LecB and CdrA, loss of function experiments with knockout variants established the dual involvement of both proteins in mannose targeted polymer retention. These results identify a persistent and specific targeting strategy to the biofilm, emphasizing its potential value as a delivery strategy and encouraging further exploration of biofilm targeted delivery.


Assuntos
Manose , Pseudomonas aeruginosa , Proteínas de Bactérias , Biofilmes , Polímeros
2.
Biomaterials ; 195: 38-50, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30610992

RESUMO

Alveolar macrophages resident in the lung are prominent phagocytic effector cells of the pulmonary innate immune response, and paradoxically, are attractive harbors for pathogens. Consequently, facultative intracellular bacteria, such as Francisella tularensis, can cause severe systemic disease and sepsis, with high morbidity and mortality associated with pulmonary infection. Current clinical treatment, which involves exhaustive oral or intravenous antibiotic therapy, has limitations such as systemic toxicity and off-target effects. Pulmonary administration represents a promising alternative to systemic dosing for delivering antibiotics directly to the lung. Here, we present synthesized mannosylated ciprofloxacin polymeric prodrugs for efficient pulmonary delivery, targeting, and subsequent internalization by alveolar macrophages. We demonstrate significant improvement in efficacy against intracellular infections in an otherwise uniformly lethal airborne Francisella murine model (F. novicida). When administered to the lungs of mice in a prophylactic regimen, the mannosylated ciprofloxacin polymeric prodrugs led to 50% survival. In a treatment regimen that was concurrent with infection, the survival of mice increased to 87.5%. Free ciprofloxacin antibiotic was ineffective in both cases. This significant difference in antibacterial efficacy demonstrates the impact of this delivery platform based on improved physiochemical, pharmacokinetic, and pharmacodynamic properties of ciprofloxacin administered via our glycan polymeric prodrug. This modular platform provides a route for overcoming the limitations of free drug and increasing efficacy in treatment of intracellular infection.


Assuntos
Macrófagos Alveolares/metabolismo , Polissacarídeos/química , Pró-Fármacos/química , Francisella tularensis/metabolismo , Espectroscopia de Ressonância Magnética , Manose/metabolismo , Testes de Sensibilidade Microbiana
3.
Polym Chem ; 9(42): 5224-5233, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36660314

RESUMO

Herein, we developed a fully polymerizable, peptide-targeted, camptothecin polymeric prodrug system. Two prodrug monomers were synthesized via esterification of campothecin (20Cam) and 10-hydroxycamptothecin (10Cam) with mono-2-(methacryloyloxy)ethyl succinate (SMA) resulting in polymerizable forms of the aliphatic ester- and aromatic ester-linked drugs respectively. These monomers were then incorporated into zwitterionic polymers via RAFT copolymerization of the prodrug monomers with a tert-butyl ester protected carboxy betaine monomer. Subsequent deprotection of the tert-butyl residues with TFA yielded carboxy betaine methacrylate (CBM) scaffolds with controlled prodrug incorporation. Reverse phase HPLC was then employed to establish drug release kinetics in human serum at 37 oC for the resultant polymeric prodrugs. Copolymers containing 10Cam residues linked via aromatic esters showed faster hydrolysis rates with 59 % drug released at 7 days, while copolymers with Cam residues linked via aliphatic esters showed only 28 % drug release over the same time period. These differences in drug release kinetics were then shown to correlate with large differences in cytotoxic activity in SKOV3 ovarian cancer cell cultures. At 72 hours, the IC50s of aromatic- and aliphatic- ester linked prodrugs were 56 nM and 4776 nM, respectively. An EGFR-targeting peptide sequence, GE11, was then directly incorporated into the polymeric prodrugs via RAFT copolymerization of the polymeric prodrugs with a peptide macronomer. The GE11-targeted polymeric prodrugs showed enhanced targeting and cytotoxic activity in SKOV3 cell cultures relative to untargeted polymers containing the negative control sequence HW12. Following pulse-chase treatment (15 min, 37 °C), the 72 hour IC50 of GE11 targeted prodrug was determined to be 1597 nM, in contrast to 3399 nM for the non-targeted control.

4.
Mol Pharm ; 14(6): 1988-1997, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28394614

RESUMO

Lung-based intracellular bacterial infections remain one of the most challenging infectious disease settings. For example, the current standard for treating Franciscella tularensis pneumonia (tularemia) relies on administration of oral or intravenous antibiotics that poorly achieve and sustain pulmonary drug bioavailability. Inhalable antibiotic formulations are approved and in clinical development for upper respiratory infections, but sustained drug dosing from inhaled antibiotics against alveolar intracellular infections remains a current unmet need. To provide an extended therapy against alveolar intracellular infections, we have developed a macromolecular therapeutic platform that provides sustained local delivery of ciprofloxacin with controlled dosing profiles. Synthesized using RAFT polymerization, these macromolecular prodrugs characteristically have high drug loading (16-17 wt % drug), tunable hydrolysis kinetics mediated by drug linkage chemistry (slow-releasing alkyllic vs fast-releasing phenolic esters), and, in general, represent new fully synthetic nanotherapeutics with streamlined manufacturing profiles. In aerosolized and completely lethal F.t. novicida mouse challenge models, the fast-releasing ciprofloxacin macromolecular prodrug provided high cure efficiencies (75% survival rate under therapeutic treatment), and the importance of release kinetics was demonstrated by the inactivity of the similar but slow-releasing prodrug system. Pharmacokinetics and biodistribution studies further demonstrated that the efficacious fast-releasing prodrug retained drug dosing in the lung above the MIC over a 48 h period with corresponding Cmax/MIC and AUC0-24h/MIC ratios being greater than 10 and 125, respectively; the thresholds for optimal bactericidal efficacy. These findings identify the macromolecular prodrug platform as a potential therapeutic system to better treat alveolar intracellular infections such as F. tularensis, where positive patient outcomes require tailored antibiotic pharmacokinetic and treatment profiles.


Assuntos
Antibacterianos/uso terapêutico , Ciprofloxacina/uso terapêutico , Administração Intranasal , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Ciprofloxacina/administração & dosagem , Ciprofloxacina/farmacocinética , Modelos Animais de Doenças , Feminino , Francisella tularensis/efeitos dos fármacos , Francisella tularensis/patogenicidade , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Distribuição Tecidual
5.
Lasers Med Sci ; 28(2): 657-68, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22669178

RESUMO

3D digital microscopy was used to develop a rapid alternative approach to quantify the effects of specific laser parameters on soft tissue ablation and charring in vitro without the use of conventional tissue processing techniques. Two diode lasers operating at 810 and 980 nm wavelengths were used to ablate three tissue types (bovine liver, turkey breast, and bovine muscle) at varying laser power (0.3, 1.0, and 2.0 W) and velocities (1-50 mm/s). Spectrophotometric analyses were performed on each tissue to determine tissue-specific absorption coefficients and were considered in creating wavelength-dependent energy attenuation models to evaluate minimum heat of tissue ablations. 3D surface contour profiles characterizing tissue damage revealed that ablation depth and tissue charring increased with laser power and decreased with lateral velocity independent of wavelength and tissue type. While bovine liver ablation and charring were statistically higher at 810 than 980 nm (p < 0.05), turkey breast and bovine muscle ablated and charred more at 980 than 810 nm (p < 0.05). Spectrophotometric analysis revealed that bovine liver tissue had a greater tissue-specific absorption coefficient at 810 than 980 nm, while turkey breast and bovine muscle had a larger absorption coefficient at 980 nm (p < 0.05). This rapid 3D microscopic analysis of robot-driven laser ablation yielded highly reproducible data that supported well-defined trends related to laser-tissue interactions and enabled high throughput characterization of many laser-tissue permutations. Since 3D microscopy quantifies entire lesions without altering the tissue specimens, conventional and immunohistologic techniques can be used, if desired, to further interrogate specific sections of the digitized lesions.


Assuntos
Terapia a Laser/efeitos adversos , Lesões dos Tecidos Moles/etiologia , Animais , Bovinos , Relação Dose-Resposta à Radiação , Ensaios de Triagem em Larga Escala/métodos , Imageamento Tridimensional , Terapia a Laser/instrumentação , Lasers Semicondutores , Fígado/efeitos da radiação , Músculo Esquelético/efeitos da radiação , Reprodutibilidade dos Testes , Robótica , Espectrofotometria Ultravioleta , Perus
6.
J Biomed Mater Res B Appl Biomater ; 100(1): 274-84, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22069303

RESUMO

Electrospun fibrous mats have gained popularity in bioengineering over the past decade, but few papers detail their degradative mechanisms. To address this, blends of hydrophobic poly(ε-caprolactone) (PCL) and hydrophilic PGA-PCL-PGA triblock copolymer were electrospun into aligned fibrous mats to assess the copolymers' mechanical and degradative properties. Increased hydrophilic triblock content led to enhanced morphological uniformity of fiber, tightening of fiber diameters, increased storage and Young's modulus, and decreased elongation. The corresponding decrease in hydrophobic PCL content led to faster hydrolytic degradation rate, as reflected by enhanced decrease in mass, molecular weight, and modulus loss at 25, 37, and 45°C. The activation energy for hydrolytic degradation for 15:85 PCL: triblock copolymer was approximately half that of 85:15 PCL: triblock copolymer. Detailed examination of fiber morphology and crystallinity revealed initial surface erosion followed by the evolution of crystalline lamellar stacks and bulk degradation at 37°C. Because of the high surface to volume and short diffusion length scale of the small diameter fibers, surface and bulk degradation may both contribute to the hydrolytic degradative behavior of these electrospun fibrous mats. Electrospun mats' distinct architecture that embodies high specific surface to volume and interfiber porous ultrastructures that lead to their unique degradative behaviors hold much potential for significant impact in the field of tissue engineering and controlled drug delivery.


Assuntos
Poliésteres/química , Sistemas de Liberação de Medicamentos/métodos , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...